
논문 24-49-08-15 The Journal of Korean Institute of Communications and Information Sciences '24-08 Vol.49 No.08
https://doi.org/10.7840/kics.2024.49.8.1183

1183

Ⅰ. Introduction

Edge computing has emerged as a novel paradigm

for data processing, addressing the challenges of the

traditional computing model where data from end de-

vices are transmitted to centralized computing servers

for storage and analysis[1,2]. However, applications in

edge environments, such as the Internet of Things

(IoT), have introduced fresh complexities to this con-

ventional approach. IoT ecosystems frequently com-

prise numerous end devices generating substantial vol-

umes of raw data. The conventional method of trans-

mitting all data to remote computing servers strains

network infrastructures and computing resources

significantly.

In addition, addressing network latency becomes

increasingly arduous, as data traffic often undergoes

multiple routing stages and traverses extensive dis-

tances before reaching cloud servers. Edge computing

offers a solution to these hurdles by facilitating the

deployment of edge nodes near data sources, thereby

enabling localized data processing. However, im-

plementing computational processing at the edge no-

des also has difficulties because edge nodes often have

limitations, such as limited battery life, bandwidth

costs, computing capacity, and unstable edge network

※ This work was supported by the Agency for Defense Development by the Korean Government(UC210025VD).
w First Author : Soongsil University Department of Electronic Engineering, jangwon.lee@dcn.ssu.ac.kr, 학생회원
° Corresponding Author : Soongsil University Department of Electronic Engineering, younghak@ssu.ac.kr, 종신회원
* LIG Nex1, dooho.keum@lignex1.com, 정회원; gyumin.lee@lignex1.com
** Agency for Defense Development(ADD), sikim777@add.re.kr; mengddor@add.re.kr, 정회원
논문번호：KICS2024-04-069-C-RN, Received April 17, 2024; Revised April 20, 2024; Accepted April 20, 2024

A Design and Implementation of a Self-Managed
Kubernetes Mobile Edge Cluster

JangWon Leew, YoungHan Kim°, Dooho Keum*, Gyu-min Lee*, Suil Kim**, Myoung-hun Han**

ABSTRACT

In recent years, edge computing has acquired a significant interest in developing and deploying applications

by bringing computational resources close to the data source, improving the quality of application experience,

and optimizing system resource usage. Edge node deployment strategies in existing studies suppose that once

edge nodes are registered in an edge computing system, they will permanently operate with high availability.

However, deploying the orchestration solutions in edge computing environments is challenging because of the

mobility of edge nodes (mobile nodes) and low availability due to energy limitations and network unstable. To

solve this problem, we propose a standalone management structure for deploying mobile nodes in an

edge-cloud computing environment that enables mobility support in a Kubernetes-based Edge-Cloud

infrastructure. We develop self-managed mobile edge nodes constructed as standalone nodes, ensuring workloads

continue operating even when the connection between the mobile node and the cloud is interrupted.

Additionally, we consider an energy-aware deployment strategy through energy monitoring and workload scaling

schemes at the self-managed mobile node. In this paper, we also implement the proposed architecture on the

infrastructure built and established by OpenStack and KubeEdge open-source projects. Measurements show the

feasibility of the proposed architecture in deploying mobile nodes that operate independently.

Key Words : Mobile Edge Computing, Monitoring, Cloud Computing, KubeEdge, Energy-aware

mailto:sikim777@add.re.kr

The Journal of Korean Institute of Communications and Information Sciences '24-08 Vol.49 No.08

1184

connection[2,3]. Therefore, these difficulties must be

considered when designing the infrastructure for edge

nodes to optimize performance and increase the lon-

gevity of edge networks.

Containerization[4], extensively researched for edge

computing solutions, offers a virtualization technique

that swiftly deploys and executes edge computing ap-

plications on edge devices[5-7]. This method isolates

applications within self-sufficient environments and

furnishes requisite dependencies (libraries, binaries,

and other configuration files) for seamless operation.

With the escalating scale of edge computing, container

proliferation becomes inevitable. Consequently, man-

aging this burgeoning container count necessitates ef-

ficient container orchestration to monitor and manage

resource states via multiple edge nodes in an edge

computing environment.

Kubernetes[8], a prominent container orchestration

platform, has garnered considerable attention due to

its capability to manage large container deployments.

Recent investigations have explored Kubernetes' utili-

ty in orchestrating containers on edge nodes to furnish

edge computing solutions[9-12]. However, existing stud-

ies[12,13] presuppose continuous availability of regis-

tered edge nodes for task processing until they are

removed from the edge system. Consequently, edge

nodes are typically situated in fixed locations to man-

age specific tasks within designated areas. While this

assumption aligns with specific deployments, such as

network routers and smart home devices designed for

perpetual online presence, it may not be universally

applicable.

Integrating mobile nodes introduces a dynamic di-

mension to data processing and communication in the

edge computing landscape. However, the convergence

of mobility and edge computing also brings a sig-

nificant challenge concerning power and energy con-

sumption[14,15]. For instance, in dynamic environments

like military operations[16,17], mobile nodes, such as

soldier-worn devices, unmanned aerial vehicles

(UAVs), or reconnaissance vehicles, operate under

stringent energy constraints due to prolonged deploy-

ments and missions. Communication between these

mobile nodes and edge computing servers is crucial

for real-time data collecting, situational awareness,

and mission-critical decision-making. However, the

inherent mobility of these nodes, coupled with the dif-

ficulties of military operations, exacerbates the chal-

lenge of managing power resources effectively.

Communication activities, essential for transmitting

data to and from edge computing nodes, incur sig-

nificant energy overheads, rapidly depleting battery

reserves. Moreover, the unpredictable and hostile en-

vironments where military operations occur neces-

sitate robust communication monitoring and en-

ergy-efficient strategies to ensure continuous and reli-

able connectivity while conserving power.

Several open-source tools developed for the rapidly

growing edge infrastructure deployment are

Minikube[18], Microk8s[19], k3s[20], and KubeEdge[21,22].

These tools are all lightweight deployments of

Kubernetes to enable data processing and analysis on

edge devices with limited computational resources,

power, and communication capabilities. However, one

of the crucial factors that need to be considered in

these open sources is mobility, as it directly impacts

the implementation strategy, scalability, and perform-

ance of edge infrastructure[23].

Unlike the existing deployment strategy in the

cloud environment, the connection from mobile edge

nodes to the cloud anchor nodes is unstable in a mo-

bile edge environment. Therefore, operation at the

mobile node must be possible without connection to

the anchor node. Mobile edge nodes must have the

ability for standalone operation and an energy-aware

strategy to perform their processes and tasks, which

necessitate constant mobility in unstable network

environments. Therefore, a new architecture is re-

quired to deploy, manage, and operate mobile nodes

in an edge-cloud computing environment. Ensure con-

nection and independent operation between mobile

nodes and cloud servers.

Motivated by this limitation, in this paper, we pro-

pose an architecture for implementing mobile nodes

in a Kubernetes-based edge-cloud environment with

the critical consideration of empowering self-managed

mobile nodes with independent operation from the

cloud servers while ensuring seamless communication

between them. The self-managed mobile nodes have

the autonomy to operate independently yet remain in-

논문 / A Design and Implementation of a Self-Managed Kubernetes Mobile Edge Cluster

1185

terconnected with cloud servers for coordination and

data exchange when connected and reactive. We

leveraged and improved KubeEdge's architecture for

deploying self-managed mobile nodes and added fea-

tures to support the development of nodes' monitoring

and data collection mechanisms. KubeEdge is an edge

computing framework constructed atop Kubernetes. It

offers functionalities encompassing computer resource

management, deployment, runtime, and operational

capabilities across geographically distributed edge

computing resources.

Additionally, the proposed architecture is enhanced

with energy data monitoring and energy-aware deci-

sion-making processes among mobile nodes in the

network instead of sending all data to centralized

servers. By this integration, our design enables flexi-

bility, resiliency, and scalability of cloud-edge com-

puting solutions in self-managed mobile node deploy-

ments, especially in some applications where mobility

and independence are critical, such as the military.

Our contribution is as follows:

- Propose an architecture for deploying self-man-

aged mobile nodes in Kubernetes-based

edge-cloud management. The self-managed mo-

bile node is developed with an independent meta-

data management system. This allows a workload

management system to be configured without a

control plan that avoids the unstable network en-

vironment between mobile and anchor nodes.

- To consider mobile nodes' energy constraints, we

propose energy monitoring and energy-aware

schemes in self-managed mobile nodes to design

a management operation execution structure that

improves node survival time in an unstable net-

work environment.

- The proposal verifies that working through our

real implementation experiments is feasible.

The remainder of this paper is structured as fol-

lows: Section II introduces the mobile edge-cloud en-

vironment by analyzing challenges in the case of edge

node implementation. Section III describes our pro-

posal architecture with the enhancement of KubeEdge

for mobile node implementation. The system setup for

implementation is reported in Section IV, along with

our measurements for feasibility verification of the

proposed architecture. Finally, the discussion points

and our future work are concluded in Section V.

Ⅱ. Mobile Edge-Cloud Environment

As illustrated in Fig. 1, we consider an edge-cloud

environment to be a wide range; it may correspond

to geographical regions or organizational divisions, re-

flecting the distributed nature of edge-cloud comput-

ing infrastructures.

In this environment, mobile nodes with mobility

are initially provisioned in a particular area by the

Fig. 1. Mobile Edge Node and Anchor Node with wireless links

The Journal of Korean Institute of Communications and Information Sciences '24-08 Vol.49 No.08

1186

anchor node in the cloud. The mobility pattern of

moving nodes follows: after being provisioned in a

local area and successfully establishing a connection

with the initial anchor node, the mobile node collects

and processes data from edge devices within its cover-

age area. However, the edge environment is often un-

stable and subject to many impacts, so the mobile

node may be temporarily disconnected from the an-

chor node, raising several problems that need to be

considered.

2.1 Standalone mobile node for workload
operations

The first problem is that the connection to anchor

nodes is interrupted, affecting operations between mo-

bile nodes and the cloud. Therefore, it is necessary

to have a mechanism to ensure and restore the con-

nection between mobile nodes and anchor nodes.

Furthermore, keeping workloads running on mobile

nodes unaffected by loss of connection to the anchor

node is essential to maintaining network operations

and local processes at the edge layer. Therefore, the

requirement is to build a mobile node that can operate

independently even when it loses connection to the

cloud. This means that workloads running on mobile

nodes will continue to operate and collect data as if

they were still connected to the cloud.

Kubernetes is known as a useful and potential open

source for deploying edge infrastructure. Kubernetes

is a widely adopted container orchestration platform

that automates containerized applications' deploy-

ment, scaling, and management. It has become the de

facto standard for container orchestration in cloud-na-

tive environments. In the design of Kubernetes, work-

loads are scheduled by the master node and executed

at worker nodes. The master node manages and coor-

dinates the operation of application containers; it con-

nects with worker nodes through the kubelet module,

as shown in Figure 2.

The kubelet is a critical component of a Kubernetes

cluster. An agent runs on each node in the cluster

and manages the containers on that node. The kubelet

ensures containers are running in a pod, the basic unit

of deployment in Kubernetes. It interacts with the

Kubernetes API server to receive instructions about

which pods should be running on the node and takes

action to ensure that the desired state matches the ac-

tual state of containers on the node. This includes

starting, stopping, monitoring containers, and report-

ing their status back to the control plane. The kubelet

also performs various other tasks, such as handling

container image management, managing local storage

volumes, and executing container health checks.

Overall, the kubelet plays a central role in maintaining

the health and functionality of Kubernetes nodes with-

in a cluster.

However, when the connection between the master

node and a kubelet on a worker node is severed, it

disrupts the vital communication link essential for the

functioning of the Kubernetes cluster. The master

node, which hosts the control plane components, relies

on this connection to manage and monitor containers

running on the worker node. Consequently, the loss

of connectivity results in the control plane's inability

to schedule new pods, manage existing ones, or detect

changes in their state. Without visibility into the

node's containerized workloads, the cluster may expe-

rience decreased responsiveness to failures and up-

dates, leading to operational challenges and potential

service interruptions. In addition, the original design

of Kubernetes was built to orchestrate and manage

containers across a large scale and execution size.

This results in resource-intensive and complex deploy-

ment in resource-constrained edge devices and mobi-

lity management capabilities may be limited in highly

dynamic environments. Therefore, the current kubelet

design is unsuitable for building a standalone mobile

node that can operate independently and does not de-

pend on connection to the control plan. This also re-

Fig. 2. Kubelet Functionalities in Kubernetes

논문 / A Design and Implementation of a Self-Managed Kubernetes Mobile Edge Cluster

1187

quires some control plan functions to be moved and

deployed to the edge layer.

2.2 Data consistency and synchronization of
Mobile node

In unstable network conditions, a critical challenge

arises concerning data consistency and

synchronization. Intermittent connectivity issues may

lead to data discrepancies and potential loss, partic-

ularly in distributed systems where data integrity is

paramount. To address this challenge, the requirement

of a standalone node with robust capabilities for au-

to-re-establishing connections and ensuring data syn-

chronization becomes imperative. This standalone

node serves as a resilient intermediary, capable of au-

tonomously detecting connection disruptions and ini-

tiating reconnection attempts to restore communica-

tion with both the master node and the affected worker

node. Moreover, it must possess sophisticated mecha-

nisms for data synchronization, ensuring that any dis-

crepancies resulting from the connection instability

are promptly resolved to maintain data consistency

across the cluster.

Integrating a standalone node with auto-re-

connection and data synchronization capabilities rep-

resents a proactive approach to mitigating the risks

associated with unstable connections in Kubernetes

clusters, enhancing resilience, and ensuring con-

tinuous operation in dynamic deployment scenarios.

2.3 Energy-aware operation
A standalone mobile node with energy-aware as-

pects is crucial in edge environments, where energy

efficiency is paramount. Such a node must feature

power-efficient hardware components to minimize

power consumption and extend battery life. Dynamic

power management techniques allow the node to

adapt its energy usage based on workload demands

and environmental conditions, ensuring optimal per-

formance while conserving power. Energy-aware net-

working enables intelligent network connectivity man-

agement, reducing energy consumption during data

transmission. Real-time energy monitoring and report-

ing capabilities are required to provide insights into

power consumption, facilitating proactive manage-

ment decisions to optimize efficiency. Additionally,

effective battery management and health monitoring

mechanisms ensure the longevity and reliability of the

node's power source. By integrating these en-

ergy-aware aspects, standalone mobile nodes in edge

environments can achieve sustainable and efficient op-

eration, meeting the demands of resource-constrained

deployment scenarios while contributing to environ-

mental sustainability.

In summary, deploying mobile nodes poses several

challenges that must be addressed for effective oper-

ation in dynamic and unstable environments: (i)

Ensuring the functionality of standalone mobile nodes

in the absence of connectivity to the master node is

imperative. This necessitates the development of au-

tonomous capabilities within the mobile node to sus-

tain operations independently, mitigating depend-

encies on central control and enabling seamless func-

tionality even in disconnected scenarios; (ii) Critical

concerns include maintaining data resilience, re-estab-

lishing connections, and facilitating data

synchronization. Mobile edge nodes must have robust

mechanisms to handle intermittent connectivity issues,

ensuring data integrity and consistency across dis-

tributed systems; (iii) Energy awareness is a sig-

nificant requirement for mobile edge nodes, emphasiz-

ing optimizing power consumption and extending bat-

tery life. Energy-efficient hardware, dynamic power

management techniques, and proactive battery man-

agement mechanisms are essential to enhancing the

sustainability and efficiency of mobile node deploy-

ments in energy-constrained environments.

Addressing these three key challenges is essential for

enabling mobile edge nodes' successful deployment

and operation and supporting resilient and sustainable

edge computing ecosystems.

Ⅲ. Proposed Architecture of Self-Managed
Mobile Edge Node

In this proposal, the self-managed mobile node con-

cept is built on leveraging an open source that is use-

ful in deploying and managing edge nodes in an edge

environment. It's an extension of Kubernetes, tailored

specifically for edge computing environments.

The Journal of Korean Institute of Communications and Information Sciences '24-08 Vol.49 No.08

1188

However, to satisfy the requirements stated in section

III, the basic design architecture of KubeEdge archi-

tecture is not enough. Based on that, in this study,

we propose and further improve other features based

on KubeEdge's architecture to build a strategy to de-

ploy a standalone edge node with energy-aware cogni-

tive operation capabilities.

3.1 Preliminary about KubeEdge.
KubeEdge is an extension to Kubernetes, tailored

specifically for edge computing environments. This

open-source project, incubated by the CNCF, ad-

dresses the unique challenges posed by edge comput-

ing, where resources are distributed across a vast net-

work of devices and systems. KubeEdge bridges the

gap between cloud and edge by extending Kubernetes'

capabilities to the edge nodes, enabling the deploy-

ment and management of containerized workloads

closer to the data sources. Its architecture decentral-

izes the control plane, allowing for local execution

of workloads and facilitating low-latency data proc-

essing while maintaining centralized management and

coordination through Kubernetes' familiar APIs. With

features such as device management, data synchroni-

zation, and event-driven programming models,

KubeEdge empowers organizations to harness the po-

tential of edge computing for a wide range of use cas-

es, from industrial IoT to smart cities.

In KubeEdge architecture, a cluster is considered

with master nodes on the cloud side and worker nodes

on the edge side. The main components of KubeEdge

are cloudcore and edgecore, which are responsible for

communication between cloud and edge. In cloudcore,

CloudHub is constructed as a socket server to update

all changes on the cloud side and send them to

EdgeHub.

In edgecore, edged is an agent that manages the

life cycle of containerized applications inside the pod.

The working status of these applications is updated

to the cloud by EdgeHub, a web socket client respon-

sible for communicating edge-side to the cloud and

cloud-side resources to the edge. Edgecore is respon-

sible for deploying containerized workloads at edge

nodes and provides management functionality for the

pod lifecycle.

Because of the flexibility in establishing and main-

taining connections between edge nodes and servers

through cloudcore and edgecore, KubeEdge is a po-

tential platform for standalone mobile node deploy-

ment in edge environments. However, the increased

energy consumption associated with KubeEdge's re-

source-intensive nature and network dependency

could impact battery life and operational efficiency,

which requires the additional monitoring mechanism

and energy-aware operation of mobile nodes.

3.2 Proposed Self-Managed Mobile Edge
Node Architecture

Figure 3 illustrates our proposed architecture for

deploying and managing mobile nodes in the

edge-cloud environment. This architecture can deploy

and self-operate computing tasks on mobile nodes.

The proposed system relies on the KubeEdge plat-

form to handle communication between mobile nodes

and anchor nodes in the cloud. CloudCore and

MobileCore are two main modules that establish and

re-establish connections between mobile nodes and

anchor nodes. Even in an interrupted connection, the

exchange mechanism between these two modules al-

lows them to automatically reconnect when the net-

work status of mobile nodes is available. EdgeHub
receives all operational information at mobile nodes

through MetaDataManager and EdgeRuntime, which

updates the status of active container workloads on

mobile nodes. These two modules enable the

self-managed mobile node to operate independently

from the anchor node. Metadata management allows

the workload management process to be configured

without a control plane and keeps all workloads run-

ning at the mobile node. All activities on the mobile

node are maintained and stored at NodeLocalStore
when the connection to the anchor nodes is

interrupted. MobileCore will automatically recover

and synchronize data with CloudCore when the con-

nection is restored. The operating mechanism between

CloudCore and MobileCore helps ensure data con-

sistency and synchronization between mobile and an-

chor nodes in the cloud.

Monitoring Agents Manager, which manages and

deploys agents to collect and process data on mobile

논문 / A Design and Implementation of a Self-Managed Kubernetes Mobile Edge Cluster

1189

nodes. They operate continuously and monitor the

health of the mobile node for a certain period to eval-

uate the node's condition and ensure timely actions

in handling issues related to the mobile node's health.

Some of the agents proposed to be deployed in this

study include (i) energy monitoring agent, which plays

an important role in collecting data on energy con-

sumption of mobile nodes; (ii) network connection

status monitoring, collecting data as well as patterns

about the network connection of new mobile nodes

and anchor nodes in the cloud, (iii) computation mon-

itoring agent, track data about changes in mobile

node's computing resources such as CPU and memo-

ry, and (iv) energy-aware policy agent, plays the role

of making decisions about node operations corre-

sponding to the node's current energy situation. The

data collected from these monitoring agents will be

stored locally at the node and synchronized to the

cloud for further processing.

To build a standalone self-managed mobile node

that can operate autonomously based on energy,

AutoScale Controller is proposed to coordinate node

operations. With the node energy-aware mechanism,

the AutoScale Controller receives data collected about

the node's energy and data from the energy-aware pol-

icy agent to make decisions regarding the operation

of workloads on mobile nodes.

On the cloud side, Mobile Node Management plays

a role in managing the status of mobile nodes through-

out the network. Data about mobile nodes is updated

and saved here. They are also the basis for developing

workload distribution mechanisms in the Scheduling
Policy Management module, which coordinates work-

load deployment on mobile nodes depending on the

node's state, such as node energy, node resource, and

network.

With this proposed architecture, the operation and

management of self-managed mobile nodes in the

edge computing environment are deployed wholly and

consistently. Self-managed mobile nodes can operate

independently even if they lose connection to anchor

nodes in the cloud. All workloads are maintained and

automatically synchronized with the cloud when there

is a connection. Energy is considered for self-oper-

Fig. 3. Architecture for Self-Managed Mobile Node Implementation in Edge Computing Environment

The Journal of Korean Institute of Communications and Information Sciences '24-08 Vol.49 No.08

1190

ation with a mechanism to control workload and node

operations based on energy.

Ⅳ. Implementation

In this section, we present the implementation proc-

ess on OpenStack Infrastructure and other open-source

platforms to verify the feasibility of implementing the

proposed architecture for building self-managed mo-

bile nodes.

4.1 Experimental Environment Setup
In this experiment, we construct an environment

based on OpenStack and Kubernetes, in which each

anchor node is located as a node in a general

Kubernetes cluster, and the moving node is composed

of edge nodes through KubeEdge as shown in Figure

4. Each anchor node independently configures a cloud

core for communication with the edge. At the edge,

essential elements for configuring the environment

(such as Local DNS), agents for monitoring, scalers

for adjusting the number of workloads themselves,

and Util and nginx web servers, which may corre-

spond to actual workloads, are operated with 3pods

deployed for nginx server.

Fig. 4. Experimental Setup in OpenStack

4.2 Self-managed mobile nodes operate under
disrupted networks from anchor nodes.

In this experiment, we verify the mobile node's

ability to operate independently in an unstable net-

work environment where the mobile node is dis-

connected from the anchor node. We inject network

disruption in moving node-1 by disabling OpenStack’s

network port to prevent packets from moving node-1.

Network access is impossible after deactivating the

network port, as shown by the failed execution of ping

commands in Figure 5. However, access and ex-

ecution of workloads at the moving node are still

maintained. by DNS, which can be used through in-

ternal access (virsh console) to the mobile node and

DNS utility workload. addition, it is confirmed that

nginx web server workloads operating inside edge no-

des are accessed and operated through IP and FQDN

addresses in the same way as in Fig 6.

We concluded that our proposed self-managed mo-

bile node can work independently without connection

Fig. 5. Network check, DNS check (moving node)

Fig. 6. The workload is still working under disconnection
conditions

논문 / A Design and Implementation of a Self-Managed Kubernetes Mobile Edge Cluster

1191

to the anchor nodes. The workload deployment is still

working usually, as shown in Fig. 6

4.3 Energy-aware workload scaling at mobile
node

To implement the monitoring part, we set up a gen-

eral monitoring environment configured through

Prometheus and Grafana, and energy monitoring is

possible by configuring a Kepler agent. Fig 7 shows

the additionally configured monitoring environment.

Monitoring data of the configured environment

may be visually checked through the Grafana dash-

board, as shown in Fig 8. The first indicates the node's

current power situation, and the second indicates the

amount of power consumed in the node. PKG refers

to CPU-related consumption, and OTHER refers to

additional power consumption, such as GPUs, exclud-

ing CPUs and memories. Currently, information on

elements consumed due to the specificity of the

KubeEdge is not displayed in units of workloads, but

labeling will be updated later.

Finally, Fig 9 shows the log of scalers operating

on edge nodes. It periodically checks the node's en-

ergy situation, and when a value below a preset crite-

rion is observed, the scaler scales in workloads and

operates internally to reduce energy consumption.

In addition, we evaluate the efficiency of the pro-

posed energy-aware workload scaling scheme at the

mobile node by comparing scaling-in and without ap-

plying the scaling-in mechanism in the workload de-

ployment of the nginx-server. In particular, in the scal-

ing-in scenario, we adjust the node's remaining energy

to a level (<10%), then immediately, the number of

nginx pods is scaled to 1pods and in the typical case,

the number of pods is kept unchanged (3pods). The

result is shown in Fig 10.

As we can see in Fig 10, by applying an en-

ergy-aware scaling scheme, the number of workload

pods is reduced to the minimum with one pod, and

the remaining energy of nodes in low energy con-

ditions is adjusted from 10 percent to 5.25% over

4-time units. We can see that this makes the node

Fig. 7. Monitoring Environment

Fig. 8. Energy Monitoring Dashboard (Up-remained Power, Down-Current usage)

Fig. 9. Workload Scale-in

The Journal of Korean Institute of Communications and Information Sciences '24-08 Vol.49 No.08

1192

survival time longer compared to the normal case.

After 4-time units, the node's energy is exhausted

nearly to zero; in that condition, the mobile node may

not work for any operation.

In summary, the mobile node can work with the

proposed features. It can maintain workloads in un-

stable connection conditions. At the same time,

through the energy-scaling deployment strategy, the

mobile node self-adjusts its workload to match the

available energy level.

Ⅴ. Conclusion and Future Works

In this study, we consider the problem of building

and deploying proposed self-managed mobile nodes

in a mobile edge-cloud environment that can operate

independently when the connection between the mo-

bile node and the cloud server is interrupted. Original

KubeEdge architecture is utilized and improved to

build connection modules between the cloud core and

mobile code to help establish and re-establish con-

nections between self-managed mobile nodes and an-

chor nodes in the cloud effectively. At the same time,

monitoring agents are also considered for integration

and architecture of mobile nodes for the energy-aware

development strategy at mobile nodes. With this im-

plementation, it is possible to effectively manage and

monitor the lifecycle of self-managed nodes and en-

sure data integrity in unstable network environments.

Through implementation with OpenStack and

Kubedge infrastructure, we confirm the feasibility of

the proposed architecture. The proposed energy-aware

scheme at the self-managed mobile node can ensure

a longer node survival time.

In the future, this integration and architecture will

consider the development of screening features based

on intelligent technologies such as machine learning.

It helps monitor the health of self-managed mobile

nodes proactively and promptly prov ides timely re-

covery policies whenever problems occur.

References

[1] G. Carvalho, B. Cabral, V. Pereira, and J.

Bernardino, “Edge computing: Current trends,

research challenges, and future direc-

tions,” Comput., vol. 103, pp. 993-1023, 2021.

(https://doi.org/10.1007/s00607-020-00896-5)

[2] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi,

“Resource scheduling in edge computing: A

survey,” in IEEE Commun. Surv. & Tuts., vol.

23, no. 4, pp. 2131-2165, Fourth quarter 2021.

(https://doi.org/10.1109/COMST.2021.310640

1)

[3] Y. Mansouri and M. A. Babar, “A review of

edge computing: Features and resource

virtualization,” J. Parallel and Distrib.
Comput., vol. 150, pp. 155-183, 2021.

Fig. 10. Energy Comparison between Node’s Remaining Energy under Energy-aware schemes

논문 / A Design and Implementation of a Self-Managed Kubernetes Mobile Edge Cluster

1193

(https://doi.org/10.1016/j.jpdc.2020.12.015)

[4] O. Bentaleb, A. S. Belloum, A. Sebaa, and A.

El-Maouhab, “Containerization technologies:

Taxonomies, applications and challenges,” J.
Supercomputing, vol. 78, no. 1, pp. 1144-

1181, 2022.

(https://doi.org/10.1007/s11227-021-03914-1)

[5] S. Hu, W. Shi, and G. Li, “CEC: A

containerized edge computing framework for

dynamic resource provisioning,” in IEEE
Trans. Mobile Comput., vol. 22, no. 7, pp.

3840-3854, Jul. 2023.

(https://doi.org/10.1109/TMC.2022.3147800)

[6] O. Oleghe, “Container placement and

migration in edge computing: Concept and

scheduling models,” in IEEE Access, vol. 9,

pp. 68028-68043, 2021.

(https://doi.org/10.1109/ACCESS.2021.3077550)

[7] T. Kim, M. Al-Tarazi, J. W. Lin, and W.

Choi, “Optimal container migration for mobile

edge computing: Algorithm, system design

and implementation,” IEEE Access, vol. 9, pp.

158074-158090, 2021.

(https://doi.org/10.1109/ACCESS.2021.313164

3)

[8] N. Poulton, The Kubernetes book, NIGEL

POULTON LTD, 2023.

[9] S. Böhm and G. Wirtz, “Towards

orchestration of cloud-edge architectures with

Kubernetes,” Int. Summit Smart City 360°, pp.

207-230, Cham: Springer International

Publishing, 2021.

(https://doi.org/10.1007/978-3-031-06371-8_14)

[10] L. A. Phan and T. Kim, “Traffic-aware

horizontal pod autoscaler in Kubernetes-based

edge computing infrastructure,” IEEE Access,

vol. 10, pp. 18966-18977, 2022.

(https://doi.org/10.1109/ACCESS.2022.315086

7)

[11] S. Böhm and G. Wirtz, “Cloud-edge

orchestration for smart cities: A review of

kubernetes-based orchestration architectures,”

EAI Endorsed Trans. Smart Cities, vol. 6, no.

18, pp. e2-e2, 2022.

(https://doi.org/10.4108/eetsc.v6i18.1197)

[12] E. Kristiani, C. T. Yang, C. Y. Huang, Y. T.

Wang, and P. C. Ko, “The implementation of

a cloud-edge computing architecture using

OpenStack and kubernetes for air quality

monitoring application,” Mobile Netw. and
Appl., vol. 26, pp. 1070-1092, 2021.

(https://doi.org/10.1007/s11036-020-01620-5)

[13] L. Ju, P. Singh, and S. Toor, “Proactive

autoscaling for edge computing systems with

kubernetes,” in Proc. 14th IEEE/ACM Int.
Conf. Utility and Cloud Comput. Companion,
pp. 1-8, Dec. 2021.

(https://doi.org/10.1145/3492323.3495588)

[14] P. McEnroe, S. Wang, and M. Liyanage, “A

survey on the convergence of edge computing

and AI for UAVs: Opportunities and

challenges,” IEEE Internet of Things J., vol. 9,

no. 17, pp. 15435-15459, 2022.

(https://doi.org/10.1109/JIOT.2022.3176400)

[15] F. S. Abkenar, P. Ramezani, S. Iranmanesh, S.

Murali, D. Chulerttiyawong, X. Wan, A.

Jamalipour, and R. Raad, “A survey on

mobility of edge computing networks in IoT:

State-of-the-art, architectures, and challenges,”

IEEE Commun. Surv. and Tuts. vol. 24, no. 4,

pp. 2329-2365, 2022.

(https://doi.org/10.1109/COMST.2022.321146

2)

[16] P. McEnroe, S. Wang, and M. Liyanage, “A

survey on the convergence of edge computing

and AI for UAVs: Opportunities and

challenges,” in IEEE Internet of Things J.,
vol. 9, no. 17, pp. 15435-15459, Sep. 2022.

(https://doi.org/10.1109/JIOT.2022.3176400)

[17] R. Bajracharya, R. Shrestha, S. A. Hassan, H.

Jung, and H. Shin, “5G and beyond private

military communication: Trend, requirements,

challenges and enablers,” in IEEE Access, vol.

11, pp. 83996-84012, 2023.

(https://doi.org/10.1109/ACCESS.2023.330321

1)

[18] The Kubernetes Authors, Minikube
start(2024), Retrieved Mar. 4, 2024, from

https://minikube.sigs.k8s.io/docs/start

[19] Canonical Ltd., MicroK8s - The effortless

The Journal of Korean Institute of Communications and Information Sciences '24-08 Vol.49 No.08

1194

Kubernetes, Retrieved Mar. 4, 2024, from

https://microk8s.io/

[20] K3s Project Authors, K3s - Lightweight
Kubernetes, Retrieved Mar. 4, 2024, from

https://docs.k3s.io/

[21] Y. Xiong, Y. Sun, L. Xing, and Y. Huang,

“Extend cloud to edge with kubeedge,” in

Proc. IEEE/ACM Symp. Edge Comput. (SEC),
pp. 373-377, Oct. 2018.

(https://doi.org/10.1109/SEC.2018.00048)

[22] KubeEdge Project Authors, KubeEdge - Why
KubeEdge. Retrieved Mar. 4, 2024,

https://kubeedge.io/docs/

[23] R. Singh, R. Sukapuram, and S. Chakraborty,

“A survey of mobility-aware multi-access

edge computing: Challenges, use cases and

future directions,” Ad Hoc Netw., 140, p.

103044, 2023.

(https://doi.org/10.1016/j.adhoc.2022.103044)

JangWon Lee

Feb. 2020 : B.S. degree, Soon-

gsil University

Feb. 2022 : M.S. degree, Soon-

gsil University

Mar. 2022~Current : Ph.D. stu-

dent, Soongsil University

<Research Interests> Cloud computing, Auto-

nomous, and 5G/6G network infrastructure

[ORCID:0009-0002-6194-2520]

YoungHan Kim

Feb. 1984 : B.S. degree, Seoul

University

Feb. 1986 : M.S. degree, KAIST

Feb. 1990 : Ph.D. degree, KAIST

Mar. 1994~Current : Professor,

Soongsil University

<Research Interests> ICT technology, wireless

communications, data communications

[ORCID:0000-0002-1066-4818]

Dooho Keum

Feb. 2015 : M.S. degree, Ajou

University

Feb. 2020 : Ph.D. degree, Ajou

University

Jan. 2022~Current : Senior Re-

search Engineer, LIG Nex1

<Research Interests> Military IoT, Trust based

Routing, and Wireless Ad-hoc/Mesh/Sensor

Networks

[ORCID:0000-0002-8267-2331]

Gyu-min Lee

Feb. 2014 : B.S. degree, Ajou

University

Feb. 2016 : M.S. degree, Ajou

University

Aug. 2022 : Ph.D. degree, Ajou

University

Feb. 2023~Current : Senior Re-

search Engineer, LIG Nex1

<Research Interests> C5ISR, Tactical network

architecture, SDN/NFV

[ORCID:0000-0002-6384-795X]

Suil Kim

Feb. 1986 : B.S. degree, Soon-

gsil University

Feb. 1988 : M.S. degree, Soon-

gsil University

Aug. 2000 : Ph.D. degree,

KAIST

Mar. 1988~Current : ADD

<Research Interests> Military Tactical Satellite,

Wireless communications, Network Centric

Operation Environment

논문 / A Design and Implementation of a Self-Managed Kubernetes Mobile Edge Cluster

1195

Myoung-hun Han

Feb. 2007 : B.S. degree, Chung-

Ang University

Aug. 2009 : M.S. degree, Chung-

Ang University

Aug. 2021 : Ph.D. degree, Chung-

Ang University

Oct. 2014~Current : ADD

<Research Interests> Tactical Network, Network

M&S, Satellite Network

	15 이장원202404-069-C-RN_수정
	책갈피
	_Hlk161145756

